
CS590 – Adv UNIX Programming Summer 2010 Page 1

 Richard Johnson 6/4/10

Lecture #6 – Process Control (Chapter 8 continued)

 Race conditions

A race condition occurs when multiple processes are trying to do something with a
shared resource (data) and the final outcome depends on the order in which the processes
run.

These conditions are very difficult to identify and debug, and serve as a roadblock for
concurrent programming.

These conditions are resolved generally with signaling and synchronization mechanisms
to be discussed in later chapters.

Example (program with a race condition):

 static void pr_char(char *str)
 {
 char *ptr;
 int c;

 setbuf(stdout, NULL); /* unbuffered */

 for (ptr = str; c = *ptr++;)
 putc(c, stdout);
 }

 int main(void)
 {
 pid_t pid;

 if ((pid = fork()) < 0)
 {
 perror("fork failed");
 exit(1);
 }
 else if (pid == 0)
 pr_char("output from child\n");
 else
 pr_char("output from parent\n");

 exit(0);
 }

CS590 – Adv UNIX Programming Summer 2010 Page 2

 Richard Johnson 6/4/10

 Output:

 $ race_prog

 output from child
 output from parent

 $ race_prog
 ooutput from parent
 utput from child

 Exec functions

Exec is 6 function calls which allow a process to begin running a new program.

When a process calls one of the exec functions, that process is completely replaced by the
new program, and that program begins executing at its main functions.

Note: The PID does not change (no new process created).

int execl(const char *pathname, const char arg0, … /* (char *) 0 */);
int execv(const char *pathname, char *const argv[]);
int execle (const char *pathname, const char arg0, … /* (char) 0, char const envp[]*/);
int execve(const char *pathname, char *const argv[], char *const envp[]);

int execlp(const char *filename, const char arg0, … /* (char *) 0 */);
int execvp(const char *filename, char *const argv[]);

Note: all six return -1 on error, and no return for success

Function Pathname Filename Arg list Argv[] Environ Envp[]
Execl * * *
Execlp * * *
Execle * * *
Execv * * *
Execvp * * *
Execve * * *
(letter) p L v e

Note: The versions that end in "p" will search the path if filename doesn't start with "/".
Note: The versions that end in "e" allow you to specify an environment pointer.
Note: The versions that have "l" after exec, list command args individually.
Note: The versions that have "v" after exec, have command args in an array.

CS590 – Adv UNIX Programming Summer 2010 Page 3

 Richard Johnson 6/4/10

Properties inherited after exec:

 PID and PPID, Process group ID, and session ID
 RUID, RGID, and supplementary group ID's
 Controlling terminal
 Time left until alarm
 Current working directory
 Root directory
 File mode creation mask
 File locks
 Process signal mask and pending signals
 Resource limits
 tms_utime, tms_stime, tms_cutime, tms_ustime values

Example (echoall.c):

int main(int argc, char *argv[])
{
 int i;
 char **ptr;
 extern char **environ;

 for (i = 0; i < argc; i++) /* echo all command-line args */
 printf("argv[%d]: %s\n", i, argv[i]);

 for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
 printf("%s\n", *ptr);

 return(0);
}

Example (exec_test.c):

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL};

int main(void)
{
 pid_t pid;

 if ((pid = fork()) < 0)
 {
 perror("fork failed");
 exit(1);
 }
 else if (pid == 0)
 {

CS590 – Adv UNIX Programming Summer 2010 Page 4

 Richard Johnson 6/4/10

 if (execle("/home/richj/echoall", "echoall", "myarg1", "ARG2", (char *) 0,
env_init) < 0)

 {
 perror("execle failed");
 exit(1);
 }
 }

 if (waitpid(pid, NULL, 0) < 0)
 {
 perror("waitpid failed");
 exit(1);
 }

 if ((pid = fork()) < 0)
 {
 perror("fork failed");
 exit(1);
 }
 else if (pid == 0)
 {
 if (execlp("echoall", "echoall", "only 1 arg", (char *) 0) < 0)
 {
 perror("execlp failed");
 exit(1);
 }
 }

 exit(0);
}

 Changing UID and GID

int setuid(uid_t uid);
int setgid(gid_t gid);

Rules for setuid:

1. If EUID = 0, setuid sets RUID, EUID, and saved UID to "uid".
2. If EUID != 0 but "uid" equals either RUID or saved UID, setuid sets

EUID to "uid".
3. Otherwise, errno is set to EPERM, and error is returned.

Only a superuser process can change the RUID (normally set by login(1)).
EUID is set by "exec" only if SUID is set for the program file.

CS590 – Adv UNIX Programming Summer 2010 Page 5

 Richard Johnson 6/4/10

Versions that change only effective ID's:

int seteuid(uid_t uid);
int setegid(gid_t gid);

 System function

The system fct allows an easy way to execute a command string from within a program.

Example: system("date > file");

int system(const char *cmdstring);

Return value:

 -1 if fork fails or waitpid returns error other than EINTR

127 if exec fails (i.e. shell can't be executed)
exit status if all functions succeed, the value is the termination status of shell

 Example (system function simplified):

 int system(const char *cmdstring)
 {
 pid_t pid;
 int status;

 if (cmdstring == NULL)
 return(1);

 if ((pid = fork()) < 0)
 status = -1;
 else if (pid == 0)
 {
 execl("/bin/sh", "sh", "-c", cmdstring, (char *) 0);
 _exit(127);
 }
 else
 {
 while (waitpid(pid, &status, 0) < 0)
 if (errno != EINTR)
 {
 status = -1;
 break;
 }
 }

CS590 – Adv UNIX Programming Summer 2010 Page 6

 Richard Johnson 6/4/10

 return(status);
 }

 Process Accounting

Most UNIX systems provide an option to do process accounting.
When enabled, the kernel writes an accounting record each time a process terminates.

These records are usually placed in /var/adm/pacct, and store information like UID's for
the process and accumulated resource usage.

 User Identification

char *getlogin(void);

Returns: pointer to string giving login name, NULL on error

 Process Times

clock_t times(struct tms *buf);

Returns: elapsed wall clock time in clock ticks, -1 on error

struct tms {
 clock_t tms_utime; /* user CPU */
 clock_t tms_stime; /* system CPU */
 clock_t tms_cutime; /* user CPU, terminated children */
 clock_t tms_cstime; /* system CPU, terminated children */
};

 Note: Number of clock ticks per second can be returned by sysconf(1).

 Note: See code on page 258 for times example (times_test.c)

CS590 – Adv UNIX Programming Summer 2010 Page 7

 Richard Johnson 6/4/10

Process Relationships (Chapter 9)

 Terminal Logins

In early UNIX systems, users logged into dumb terminals connected via RS-232.

4.3+BSD Terminal Logins:

 The sysadmin would create a text file called /etc/ttys (one line per terminal).
 Each line would specify the device name, and other parms passed to getty.

 On system startup, init reads /etc/ttys, and fork/exec a getty process for each.

 Getty calls open for the terminal device (read and write).

Getty then opens descriptors 0, 1, and 2 to the device, and outputs "login:".
Getty waits for someone to enter a user name.

After username is entered, getty invokes the login process:

 Example: execle("/usr/bin/login", "login", "-p", username, (char *) 0, envp);

 Login then calls getpwnam to fetch our password file entry.
 It then calls getpass(3) to display "Password:" and read passwd without echo.
 It then calls crypt(3) to encrypt the password and compare to passwd file entry.

 If login attempt fails due to incorrect password, login exits with "1".
 Init then respawns getty to start over.

 If we log in correctly, login performs the following:

 Change to our home directory (chdir)
 Change ownership of terminal device (chown)
 Group ID's are set (setgid, and initgroups)
 Environment is initialized (HOME, SHELL, USER, LOGNAME, PATH)
 User ID is set (setuid)
 Login shell is invoked [execl("/bin/sh", "-sh", (char *) 0);

SVR4 Terminal Logins:

 SVR4 supports 2 forms of terminal login a) getty b) ttymon.
 ttymon is part of a larger facility called SAF (Service Access Facility).
 Init is parent of sac (service access controller) which fork/exec ttymon.
 ttymon forks when we've entered our username.
 This child of ttymon does an exec of login to get password.

 Note: our login shell is now parented by ttymon not init.

CS590 – Adv UNIX Programming Summer 2010 Page 8

 Richard Johnson 6/4/10

 Network Logins

With network logins, instead of having a process for each terminal device, we have a
process that waits for network connections.

Starting with 4.3+ BSD, there is one process (inetd) that listens for most network
connections. Inetd is sometimes called the Internet superserver.

Inetd waits for TCP/IP connection requests to arrive at the host, and then to fork a
process and exec the appropriate program.

For example, if you type "telnet myhost" at the prompt, you are contacting the inetd
daemon on "myhost", which accepts the connection, forks, and execs the telnet program.

Once telnetd has started, it opens a pseudo-terminal device and splits in two by using
fork. The parent process handles the communication across the network, and the child
process does an exec of "login".

 Process Groups

A process group is a collection of one or more processes.
Each process group has a unique process group ID.
Process group ID's are similar to PID's - they are positive integers (pid_t datatype).

pid_t getpgrp(void);
int setpgid(pid_t pid, pid_t pgid);

Each process group can have a process group leader (i.e. process group ID = PID)

A process can set the PGID of itself or one of its children.
If setting on a child process, that process can not have called exec.
If pid is 0, then process ID of the caller is used.
If pgid is 0, the process ID specified in pid is used for pgid.

Note: Process groups become especially important relative to signals.

 Sessions

A session is a collection of one or more process groups.

See example on page 270 created by:

proc1 | proc2 &
proc3 | proc4 | proc5

 pid_t setsid(void);

CS590 – Adv UNIX Programming Summer 2010 Page 9

 Richard Johnson 6/4/10

 If the calling process is not a process group leader:

1. The process becomes the session leader of the new session.
2. The process becomes the process group leader of a new process group.
3. The process has no controlling terminal.

Note: Error is returned is the caller is already a process group leader.

Note: To ensure we are not a process group leader, fork and have parent exit, but child
continue (i.e. child has PGID of parent but different PID).

 Controlling Terminal

A session can have a single controlling terminal (usually the terminal we logged in on).

The session leader that establishes the connection to the controlling terminal is called the
controlling process.

The process groups within a session can be divided into a single foreground process
group and one or more background process groups.

If a session has a controlling terminal, then it has a single foreground process, and all
other process groups in the session are background process groups.

Whenever we type interrupt (ctrl-C), this causes the interrupt signal to be sent to all
processes in the foreground process group.

If a modem disconnect is detected by the terminal interface, the hang-up signal is sent to
the controlling process (session leader).

Note: If we wish to talk to the controlling terminal regardless of where stdin and stdout
are pointed, then we can access /dev/tty.

 Tcgetpgrp and tcsetpgrp

pid_t tcgetpgrp(int filedes);
int tcsetpgrp(int filedes, pid_t pgrpid);

tcgetpgrp returns the PGID of the foreground process group associated with the terminal
open on filedes.

If the process has a controlling terminal, the process can call tcsetpgrp to set the
foreground process group to pgrpid.

CS590 – Adv UNIX Programming Summer 2010 Page 10

 Richard Johnson 6/4/10

 Job Control

Job control requires the following:

 A shell that supports job control (i.e. C shell, Korn, Bash, Tcsh, etc.).
 The terminal driver must support job control.
 Support for certain job control signals must be provided.

Special characters:

 Interrupt character (often ctrl-c) generates a SIGINT
 Quit character (often ctrl-\) generates a SIGQUIT
 Suspend character (often ctrl-z) generates a SIGTSTP

If background job attempts to read from terminal, SIGTTIN is sent to process. This stops
the process, and we are notified at the shell so we can bring the process to foreground to
give the program input.

Bringing a job to the foreground (using fg command), sends the process a SIGCONT.

Normally output from background processes is allowed to the terminal, but if you issue
"stty tostop", then the process gets a SIGTTOU and is stopped until we bring it to
foreground.

 Shell execution of programs

Single command (i.e. cat file):

 If we type in a normal command in a shell, then the shell:

 Calls fork to make a copy of itself
 Calls exec to run the program (i.e. cat)
 The parent shell waits for the child process to complete.

 If we had chosen to put this process in background (i.e. cat file &), then the shell

would not have waited to the child process to complete before continuing.

 Pipeline (i.e. ps | cat1):

 The shell forks a copy of itself.
 The copy forks again, and the parent execs "cat1" while the child execs "ps".
 The parent shell waits for both processes to complete.

CS590 – Adv UNIX Programming Summer 2010 Page 11

 Richard Johnson 6/4/10

 Another pipeline (i.e. ps | cat1 | cat2):

 Assume the original shell is PID 949.
 The shell forks a copy of itself (PID 1988).
 PID 1988 forks twice (PID's 1989, 1990), and then execs "cat2"
 PID 1989 execs "ps"
 PID 1990 execs "cat1"

 Note: See picture page 281.

 Orphaned Process Groups

When the parent terminates, the child process is orphaned, so the child's parent process
ID becomes 1 (init).

At this point, the child is now a member of an orphaned process group. Every process in
the newly orphaned process group is sent a SIGHUP followed by a SIGCONT.

