
CS590 – Adv UNIX Programming Summer 2010 Page 1

 Richard Johnson 6/4/10

Lecture #5 – Process Basics (Chapter 7)

 Main function

When a C program is started by the kernel (via an exec function), a special startup routine
is called before the main function is called. The executable program file specifies this
start-up routine as the starting address for the program (done at link time).

int main(int argc, char **argv);

 Process Termination

Five ways for a process to terminate:

1. Normal: return from main
2. Normal: calling exit
3. Normal: calling _exit
4. Abnormal: calling abort (Chapter 10)
5. Abnormal: terminated by a signal (Chapter 10)

The special startup routine mentioned in the previous section is coded to call "exit" with
the return value of the main function (i.e. exit(main(argc, argv)).

void exit(int status);
void _exit(int status);

"exit" performs certain cleanup processing and then returns to the kernel
"_exit" returns to the kernel immediately

Example (to be correct always call return or exit at the end of main):

 int main(void)
 {
 printf("hello world\n");
 return(0);
 }

Atexit:

You can also register up to 32 functions to be called automatically by exit.
These functions are registered with "atexit".

int atexit(void (*func) (void));

 "exit" calls these functions in reverse order of their registration
 In addition, each function is called as many times as it was registered.

CS590 – Adv UNIX Programming Summer 2010 Page 2

 Richard Johnson 6/4/10

Example (atexit_test.c):

#include "ourhdr.h"

static void my_exit1(void), my_exit2(void);

int main(void)
{
 if (atexit(my_exit2) != 0)
 err_sys("can't register my_exit2");
 if (atexit(my_exit1) != 0)
 err_sys("can't register my_exit1");
 if (atexit(my_exit1) != 0)
 err_sys("can't register my_exit1");
 printf("main is done\n");
 return(0);
}

static void my_exit1(void)
{
 printf("first exit handler\n");
}

static void my_exit2(void)
{
 printf("second exit handler\n");
}

 Command Line Arguments

int main(int argc, char **argv)
{
 int i;

 for (i = 0; i < argc; i++)
 printf("argv[%d]: %s\n", i, argv[i]);

 exit(0);
}

 Environment List

Each program is also passed an environment list (i.e. extern char **environ)

By convention, the environment consists of variables in form “name=value”.

Most UNIX systems provide an alternate prototype for main:

 int main(int argc, char **argv, char **envp);

CS590 – Adv UNIX Programming Summer 2010 Page 3

 Richard Johnson 6/4/10

Access to specific environment variables can be obtained with getenv / putenv.

Example (getenv_test.c):

#include <stdlib.h>
#include <stdio.h>

int main(void)
{
 char *ptr;

 if ((ptr = getenv("TERM")) == NULL)
 {
 printf("TERM not found, setting it to vt100\n");
 putenv("TERM=vt100");

 ptr = getenv("TERM");
 }

 printf("TERM is set to %s\n", ptr);
}

 Memory Layout of a C Program

Pieces of a program:

1. text segment - i.e. the executable code of the program (sometimes read-only)

2. initialized data segment - also called data segment

3. uninitialized data segment - also called the "bss" (block started by symbol)

segment. Does not include automatic variables.

4. stack - automatic variables, information saved each time a function is called

5. heap - dynamic memory allocations

Note: Figure 7.6 on page 188 for typical memory layout
Note: You can use the "size" command to see sizes of these segments

 Shared Libraries

Most UNIX systems support shared libraries (i.e. load them in memory once, and
everyone can use them).

This reduces on memory consumption, etc.

CS590 – Adv UNIX Programming Summer 2010 Page 4

 Richard Johnson 6/4/10

 Memory Allocation

Functions for memory allocation:

1. malloc - allocate a specified number of bytes of memory without initialization

2. calloc - allocate space for a specified number of objects of a specified size

(initialized to 0).

3. realloc - changes the size of a previously allocated area (increase or decrease).

void *malloc(size_t size);
void *calloc(size_t nobj, size_t size);
void *realloc(void *ptr, size_t newsize);

void free(void *ptr);

Note: Technically speaking, these functions are library functions that make use of the
sbrk function call.

 Note: alloca function is very similar to malloc except it allocates memory from the stack

frame of the current function instead of the heap.

 Environment Variables

char *getenv(const char *name);
Returns a pointer to value associated with name or NULL if not found.

int putenv(const char *str);
Places a string in form "name=value" into environment replacing an existing defn.

int setenv(const char *name, const char *value, int rewrite);
Same as putenv with separate args for name and value.

void unsetenv(const char *name);
Remove any defiinition of name regardless of existence.

 Setjmp and longjmp

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

We call setjmp from the location that we want to return to.

CS590 – Adv UNIX Programming Summer 2010 Page 5

 Richard Johnson 6/4/10

The "val" argument to longjmp allows us to longjmp from multiple locations to the same
setjmp. This value is returned to setjmp.

 Getrlimit and setrlimit

int getrlimit(int resource, struct rlimit *rlptr);
int setrlimit(int resource, const struct rlimit *rlptr);

struct rlimit {
 rlim_t rlim_cur;
 rlim_t rlim_max;
};

Rules:

1. A soft limit can be changed by any process to a values <= its hard limit
2. Any process can lower its hard limit to a value >= its soft limit (not reversable).
3. Only a superuser can raise a hard limit.

Note: Infinite limits are specified by RLIM_INFINITY

Constant Description
RLIMIT_CORE Max size of a core file in bytes (can be 0).
RLIMI_CPU Max CPU in seconds (SIGXCPU)
RLIMIT_DATA Max size of data segment in bytes

(sum of initialized, BSS, and heap)
RLIMIT_FSIZE Max size of file to be created
RLIMIT_NOFILE Max number of open files per process.
RLIMIT_NPROC Max number of child processes per UID.
RLIMIT_RSS Max resident size size (RSS) in bytes.
RLIMIT_STACK Max size of the stack
RLIMIT_VMEM Max size of the mapped address space.

CS590 – Adv UNIX Programming Summer 2010 Page 6

 Richard Johnson 6/4/10

Process Control (Chapter 8)

 Process Identifiers

Every process has a unique process identifier (PID)
PID's are non-negative integers.

Two special processes - 0 is usually the scheduler (swapper), and 1 is usually init.

Swapper is a system process (i.e. part of the kernel).
Init is responsible for starting the UNIX system after the kernel has been bootstrapped.
Init is the "grandfather" of all other UNIX processes on the system.

pid_t getpid(void); PID of calling process
pid_t getppid(void); Parent PID of calling process
uid_t getuid(void); Real UID of calling process
uid_t geteuid(void); Effective UID of calling process
gid_t getgid(void); Real GID of calling process
gid_t getegid(void); Effective GID of calling process

Note: Most of these values can also be observed with ps, with options like -ef or -aux.
Note: None of these functions has a mechanism to return an error.

 Fork

Every process except system processes like "swapper", and the init process are started via
a function call named fork.

pid_t fork(void);

Fork creates a "copy" of the current process, and returns:

0 to the child
PID of child to the parent
-1 on error

 The child is returned a zero since it can have only one parent (i.e. using getppid).
 The parent can have multiple children but there is no function to get PID of child process.

 After fork, both the child and parent continue executing with the instruction following the

fork call (i.e. concurrently).

CS590 – Adv UNIX Programming Summer 2010 Page 7

 Richard Johnson 6/4/10

 Note: From an implementation standpoint, most current UNIX systems do not perform a
complete copy of the parent process since a call to fork is often followed by an "exec"
call. Instead, a COW (copy on write) policy is observed. In other words, parent and
child share memory until one of them needs to change it, and then the page needing
modification is copied before it is changed.

 Example 8.1 (fork_test.c):

 int glob = 6;
 char buf[] = "a write to stdout";

 int main(void)
 {
 int var;
 pid_t pid;

 var = 88;

 if (write(1, buf, sizeof(buf)-1) != sizeof(buf)-1)
 {
 perror("write failed");
 exit(1);
 }

 printf("before fork\n");

 if ((pid = fork()) < 0)
 {
 perror("fork failed\n");
 exit(1);
 }
 else if (pid == 0) /* child */
 {
 glob++;
 var++;
 }
 else /* parent */
 sleep(2);

 printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);
 }

 Note: the differences in output when run interactively versus redirected to a file.

CS590 – Adv UNIX Programming Summer 2010 Page 8

 Richard Johnson 6/4/10

File sharing:

 One characteristic of fork is that all open file descriptors in the parent are

duplicated in the child (i.e. with "dup"). The parent and child share a file table entry for
every open descriptor (see Figure 8.2 page 214).

 Normally, either (1) the parent waits for the child to complete, and file descriptors

are not an issue or (2) the parent and child go separate ways, and the parent closes
descriptors that it does not need, and the child does the same.

 Properties of parent copied to child:

 RUID, RGID, EUID, EGID, Supplementary group ID's
 Process group ID
 Session ID
 Controlling terminal
 SUID / SGID flags
 Current working directory
 Root directory
 File mode creation mask
 Signal mask and dispositions
 Close-on-exec flag for any open file descriptors
 Environment
 Attached shared memory segments
 Resource Limits

 Differences between parent and child:

 Return value from fork
 PID
 Parent PID
 Child has tms_utime, tms_stime, tms_cutime, and tms_ustime set to 0
 File locks set by parent are not inherited
 Pending alarms are cleared for the child
 Pending signals for the child is set to the empty set

 Reasons for fork to fail:

1. Too many processes on the system
2. Too many processes for our RUID

Possible uses for fork:

1. Concurrency - a process may want to duplicate itself so that the parent and
child can each execute different sections of code at the same time.

2. Program execution - a process may want to execute a different program…

CS590 – Adv UNIX Programming Summer 2010 Page 9

 Richard Johnson 6/4/10

 Vfork

Vfork is intended to create a new process when the purpose of the new process is to exec
a new program.

Vfork creates the new process like fork, but until it calls either exec or exit, the child runs
in the address space of the parent.

This function provides an efficiency gain over calling fork then exec, but more recent
versions of UNIX have improved on fork (i.e. Copy on write), and this difference is not
as significant.

Note: vfork also guarantees the child runs first, until the child calls exec or exit. This
can lead to deadlock if the child somehow waits on the parent before calling exec or exit.

Example (vfork_test.c):

int glob = 6;

int main(void)
{
 int var;
 pid_t pid;

 var = 88;
 printf("before vfork\n");

 if ((pid = vfork()) < 0)
 {
 perror("vfork");
 exit(1);
 }
 else if (pid == 0)
 {
 glob++;
 var++;
 _exit(0);
 }

 printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);
}

$ vfork_example
before vfork
pid = 607, glob = 7, var = 89

CS590 – Adv UNIX Programming Summer 2010 Page 10

 Richard Johnson 6/4/10

 Exit

Normal process termination:

1. Calling return from main
2. Calling exit
3. Calling _exit

Abornmal termination:

1. Calling abort (generating a SIGABRT to the process)
2. When a process receives certain signals.

Note: argument to exit functions is the exit status which can be retrieved by the parent.

Note: If parent dies before child, init becomes the parent process of any process whose
parent terminates.

Note: If the child terminates before the parent, then we must keep a certain amount of
information about the child after termination so the parent can check the exit status.

Note: In UNIX terms, a process that has terminated, but whose parent has not yet waited
for it (by calling wait or waitpid), is called a zombie. (Shown as a Z state in ps).

When a process that is a child of init (either directly or through inheritance) terminates,
init calls wait to clear the zombie.

 Wait and waitpid

When a process terminates, the parent is notified by receiving a SIGCHLD signal.

The parent can choose to ignore this signal, or it can provide a function that is called
when the signal occurs (i.e. a signal handler). The default is to ignore this signal.

When a process calls wait or waitpid it can do one of the following:

1. block (if all children are still running)
2. return immediately with the exit status of a child
3. return immediately with an error (no more children)

If the process is calling wait because of a received SIGCHLD signal, we can expect wait
to return immediately, otherwise it can block.

CS590 – Adv UNIX Programming Summer 2010 Page 11

 Richard Johnson 6/4/10

pid_t wait(int *statloc);
pid_t waitpid(pid_t pid, int *statloc, int options);

Note: Both return process ID of terminated child, -1 on error.

Wait can block until a child terminates, while we can specify an option to waitpid to
prevent blocking.

Waitpid doesn't wait for the first child to terminate; it usually waits for a specific child
process.

If statloc is a non-null pointer, the termination status of the child process is stored in that
location. The following macros can be used to decipher the status:

1. WIFEXITED(status) - true for a child that terminated normally; we can
call WEXITSTATUS(status) to return the exit status.

2. WIFSIGNALED(status) - true for a child that terminated abnormally due

to a signal; we can call WTERMSIG(status) to give the signal number.

3. WIFSTOPPED(status) - true is status was returned for a child that is
currently stopped; we can call WSTOPSIG(status) to return the signal
number.

Example:

void pr_exit(int status)
{
 if (WIFEXITED(status))
 printf("normal term, status = %d\n", WEXITSTATUS(status));
 else if (WIFSIGNALED(status))
 printf("abnormal term, signal = %d\n", WTERMSIG(status));
 else if (WIFSTOPPED(status))
 printf("child stopped, signal = %d\n", WSTOPSIG(status));
}

CS590 – Adv UNIX Programming Summer 2010 Page 12

 Richard Johnson 6/4/10

Example (wait_test.c):

int main(void)
{
 pid_t pid;
 int status;

 /* Generate a child with "normal" exit */

 if ((pid = fork()) < 0)
 perror("fork failed");
 else if (pid == 0)
 exit(7);

 if (wait(&status) != pid)
 perror("wait failed");
 pr_exit(status);

 /* Generate a child with "abnormal" exit */

 if ((pid = fork()) < 0)
 perror("fork failed");
 else if (pid == 0)
 abort();

 if (wait(&status) != pid)
 perror("wait failed");
 pr_exit(status);

 /* Generate a child that terminates by signal */

 if ((pid = fork()) < 0)
 perror("fork failed");
 else if (pid == 0)
 status /= 0;

 if (wait(&status) != pid)
 perror("wait failed");
 pr_exit(status);

 exit(0);
}

CS590 – Adv UNIX Programming Summer 2010 Page 13

 Richard Johnson 6/4/10

 Waitpid (continued)

pid_t waitpid(pid_t pid, int *statloc, int options);

Options constants:

 WNOHANG - Do not block (i.e. no child ready to wait for)
 WUNTRACED - Status of stopped jobs

Use of pid arg:

 pid == -1 wait for any child process (equivalent to wait)
 pid > 0 wait for child whose process ID equals pid
 pid == 0 wait for any child whose process group ID equals caller
 pid < -1 waits for any child whose process group ID equals |pid|

Benefits of waitpid over wait:

1. waitpid allows us to wait for one particular process
2. waitpid allows a nonblocking option
3. waitpid supports job control

Example: (don’t wait on child process to terminate, but prevent zombie)

 Note: This is accomplished by fork'ing twice and exiting the first child.
 Note: This is also known as "adoption" since init becomes parent of 2nd child.

 int main(void)
 {
 pid_t pid;

 if ((pid = fork()) < 0) {
 perror("fork failed");
 exit(1);
 }
 else if (pid == 0) { /* first child */
 if ((pid = fork()) < 0) {
 perror("fork failed");
 exit(1);
 }
 else if (pid > 0) /* parent of second = first child */
 exit(0);

 sleep(30); printf("second child, parent pid = %d\n", getppid());
 exit(0);
 }

CS590 – Adv UNIX Programming Summer 2010 Page 14

 Richard Johnson 6/4/10

 if (waitpid(pid, NULL, 0) != pid)
 {
 perror("waitpid error");
 exit(1);
 }

 exit(0);
 }

 Wait3 and wait4

These are provided by 4.3+ BSD UNIX, and provide one additional arg (resource sum).

pid_t wait3(int *statloc, int options, struct rusage *rusage);
pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

The rusage structure contains information like user CPU, system CPI, page faults, etc.

