
CS590 – Adv UNIX Programming Summer 2010 Page 1

 Richard Johnson 5/29/10

Lecture # 3 – Files and Directories (Chapters 4)

 Stat, fstat, and lstat functions

int stat(const char *pathname, struct stat *buf);
int fstat(int filedes, struct stat *buf); # on open files
int lstat(const char *pathname, struct stat buf); # for links

Returns 0 if OK, -1 on error

Some key elements of the stat structure:

st_mode - file type and permissions
st_uid - UID of the owner
st_gid - GID of the group owner
st_size - file size in bytes
st_blocks – number of allocated blocks
st_atime - last access time
st_mtime - last modification time
st_ctime - last inode change time

 File Types

1. Regular file - S_ISREG()
2. Directory file - S_ISDIR()
3. Character special file - S_ISCHR()
4. Block special file - S_ISBLK()
5. FIFO - S_ISFIFO()
6. Socket - S_ISSOCK()
7. Symbolic link - S_ISLNK()

Example:

 struct stat buf;

 if (lstat("/tmp/file.txt", &buf) < 0)
 {
 perror("lstat error");
 exit(1);
 }

 if (S_ISREG(buf.st_mode)) printf("regular file\n");
 else if (S_ISDIR(buf.st_mode)) printf("directory\n");
 <etc…>
 else printf("unknown file type\n");

CS590 – Adv UNIX Programming Summer 2010 Page 2

 Richard Johnson 5/29/10

 Set User Id and Set Group Id

There are several ID's associated with a running process:

 Real user ID / group ID
 Effective user ID / group ID (Supplementary group ID's)
 Saved user ID / group ID

Real UID/GID is who we really are (i.e. from the passwd file for our account)
Effective UID/GID are used for resource permission checks (i.e. file access)

Normally, effective UID/GID is equal to real UID/GID.

There are two bits in the mode (st_mode) called set UID, and set GID.

When the SUID bit is set and the file is executed, the effective UID is set to the owner of
the file, not the UID of the person logged in.

When the SGID bit is set and the file is executed, the effective GID is set to the group
owner of the file, not the GID of the person logged in.

Setting SUID / SGID:

 SUID has a value of 4, SGID has a value of 2
 These two form an optional digit to chmod with a max value of 6.

 chmod 4755 filename # Set SUID bit (rwsr-xr-x)
 chmod 2755 filename # Set SGID bit (rwxr-sr-x)
 chmod 6755 filename # Set SUID and SGID (rwsr-sr-x)

 File Access Permissions

St_mode mask Meaning
S_IRUSR User read
S_IWUSR User write
S_IXUSR User execute
S_IRGRP Group read
S_IWGRP Group write
S_IXGRP Group execute
S_IROTH Other read
S_IWOTH Other write
S_IXOTH Other execute

st_mode also encodes file permission bits.
9 bits for permissions, 4 for file type, 1 for SUID, 1 for SGID, 1 for sticky bit

CS590 – Adv UNIX Programming Summer 2010 Page 3

 Richard Johnson 5/29/10

Note: Review of file access rules particularly for directories

File access tests:

1. If the EUID of the process is 0 (root), access is allowed.
2. If the EUID of the process equals the owner of the file and the appropriate access

bit is set then access is allowed, and denied otherwise.
3. If the EGID and a supplementary group ID equals the GID of the file and the

appropriate access but is set then access is allowed, and denied otherwise.
4. If the appropriate other access permission bit is set, then access is allowed.

 Ownership of new files and directories

UID of a new file is set to the EUID of the process.
GID is set to one of EGID of the process, or the GID of the directory where created.

Note: GID value depends on flavor of operating system.

 Access function

int access(const char *pathname, int mode);
Returns 0 if OK, -1 on error;

Test for file access based on the real UID/GID.
Mode is bitwise OR'd from R_OK, W_OK, X_OK, F_OK

Example (Program is SUID root, file is uucp:sys 640, we are richj:users)

 int main(int argc, char **argv)
 {
 if (argc != 2)
 {
 fprintf(stderr, "usage: %s <pathname>\n", argv[0]);
 exit(1);
 }

 if (access(argv[1], R_OK) < 0)
 perror("access error");
 else
 printf("read access OK\n");

 if (open(argv[1], O_RDONLY) < 0)
 perror("open error");
 else
 printf("open for reading OK\n");
 }

CS590 – Adv UNIX Programming Summer 2010 Page 4

 Richard Johnson 5/29/10

 Umask function

mode_t umask(mode_t cmask);

The umask function sets the file creation mask, and returns the previous value.
Any bits that are on in the file mode creation mask are turned off in the file's mode.

Example:

 int main(void)
 {
 umask(0);

 if (creat("foo", S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
 S_IROTH | S_IWOTH) < 0)
 perror("creat error");

 umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);

 if (creat("bar", S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
 S_IROTH | S_IWOTH) < 0)
 perror("creat error");

 exit(0);
 }

 $ umask
 02
 $ test_prog
 $ ls -l foo bar
 -rw------- <…> bar
 -rw-rw-rw- <…> foo

 Chmod and fchmod functions

int chmod(const char *pathname, mode_t mode);
int fchmod(int filedes, mode_t mode);

Returns 0 if OK, -1 on error

To change permissions on a file, the EUID of the process must equal the owner of the
file, or the process must have superuser priviledges.

Note: Additional mode constants

(S_ISUID, S_ISGID, S_ISVTX, S_IRWXU, S_IRWXG, S_IRWXO)

CS590 – Adv UNIX Programming Summer 2010 Page 5

 Richard Johnson 5/29/10

 Example:

 int main(void)
 {
 struct stat statbuf;

 if (stat("foo", &statbuf) < 0)
 perror("stat failure");

 /* Turn on SGID, and off group execute */

 if (chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
 perror("chmod error");

 /* Set absolute to "rw-r--r--" */

 if (chmod ("bar", S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0)
 perror("chmod error");

 exit(0);
 }

 Sticky bit

Historical significance: If set on an executable, then on first execution, the program's
text segment was copied to the swap area when the process terminated (i.e. program
would stay memory resident). This allowed faster program loads on subsequent program
executions.

Current use: If sticky bit is set on a directory, a file can be removed or renamed only if
the user has write permission for the directory and either owns the file, owns the
directory, or is root. This is commonly done for public temporary directories.

 Chown, fchown, and lchown functions

int chown(const char *pathname, uid_t owner, gid_t group);
int fchown(int filedes, uid_t owner, gid_t group);
int lchown(const char *pathname, uid_t owner, gid_t group);

Note: Berkely based systems only allow chown by root, while System V systems allow
for root or owner of file.

CS590 – Adv UNIX Programming Summer 2010 Page 6

 Richard Johnson 5/29/10

 File Size

st_size (from stat structure) contains the size of the file in bytes.
st_blksize is the preferred block size for I/O to the file.
st_blocks is the actual number of blocks (often 512 bytes) allocated to the file.

Holes can be created in files by "seeking" past the current end of file, and writing.

 File Truncation

int truncate(const char *pathname, off_t length);
int ftruncate(int filedes, off_t length);

These functions truncate an existing file to length bytes.

Note: This function is not extremely portable.

 Filesystems

We can think of a disk being divided into one or more partitions, and each partition can
contain a filesystem. Perhaps one of the most popular filesystems is UFS (Unified File
System) which is a variation on the Berkely fast file system.

See pictures 4.13 and 4.14 from textbook: The file system contains a boot block(s), super
block, an inode list, and a group of directory and data blocks.

I-nodes are fixed length entries. Typical sizes are 64 bytes or 128 bytes long.

The I-node contains all the information about the file: its type, permission bits, size,
pointers to the data blocks, etc. Most of the information from the stat structure is
obtained from the I-node.

I-nodes numbers are unique only for a given filesystem.

Only two items are stored in the directory entry - the filename, and I-node number.

When renaming a file without changing filesystems, the actual contents of the file need
not be changed, only a new directory entry created…

When two directory entries point to the same I-node, this is called a hard link. Every I-
node has a link count that contains the number of directory entries pointing to that file.
This is why "unlinking" a file does not necessarily "delete" the file. Unlink only
decrements the link count. The file is deleted when the link count reaches zero.

CS590 – Adv UNIX Programming Summer 2010 Page 7

 Richard Johnson 5/29/10

 Link, unlink, remove, and rename functions

int link(const char *oldpath, const char *newpath);
int unlink(const char *pathname);
int remove(const char *pathname);
int rename(const char *oldname, const char *newname);

The link function creates a new hard link "newpath" for the file "oldpath".
The unlink function decrements the link count in the I-node, and deletes the file if 0.
The remove function equals unlink for files, and rmdir for directories.
The rename function is equivalent to "mv" in the shell.

Example (unlink and temp files):

 int main(void)
 {

 if (open("tempfile", O_RDWR) < 0)
 perror("open");

 if (unlink("tempfile") < 0)
 perror("unlink");

 printf("file unlinked\n");

 sleep(30);
 printf("done\n");

 exit(0);
 }

Note: file is technically deleted when unlink completes, but space not returned
until program terminates.

This property of unlink can be used by a program to assure that a temporary file it
creates will not be left around in case the program crashes.

CS590 – Adv UNIX Programming Summer 2010 Page 8

 Richard Johnson 5/29/10

 Symbolic links

A symbolic link is an indirect pointer to a file (i.e. a file that contains another filename).
Does not suffer from same restrictions as hard links (i.e. can cross filesystems).
Some fct follow symbolic links and others do not (i.e. some operate on the link itself).

Note: It is possible to introduce loops into the filesystem via symlinks (see page 100).

 Note: See top of page 100 for list of functions that follow symlinks.
 Note: It is possible to have dangling symlinks (i.e. point to a file that does not exist).

 Symlink and readlink functions

int symlink(const char *actualpath, const char *sympath);
int readlink(const char *pathname, char *buf, int bufsize);

The symlink function creates a symbolic link (i.e. ln -s).
Since open follows symlinks, we need a function to open the link itself (i.e. readlink).

Readlink opens the link, and places the filename that the link points to into "buf".

 File times

There are 3 time values maintained for each file (stored in the inode):

Stat Field Description Example Ls(1) option
st_atime Last access time read -u
st_mtime Last mod time write Default
st_ctime Last change of inode chmod, chown -c

Note: UNIX does not track access times to the inode (i.e. fct like and stat doesn't change

atime).

 Utime function (Note: review UNIX time values from lecture 1)

int utime(const char *pathname, const struct utimbuf *times);

struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
}

It is possible to change the access and modification times with the utime function.

If "times" is a null pointer, then both access and mod times are set to the current time.
If "times" is a nonnull pointer, then the EUID must be the owner or root.
Note: this function is used by touch(1), and utilities like tar(1) and cpio(1).

CS590 – Adv UNIX Programming Summer 2010 Page 9

 Richard Johnson 5/29/10

Example: (truncate files offered as cmd line args, but keep current times)

int main(int argc, char **argv)
{
 int i;
 struct stat statbuf;
 struct utimbuf timebuf;

 for (i = 1; i < argc; i++)
 {
 if (stat(argv[i], &statbuf) < 0)
 {
 perror("stat failed");
 continue;
 }

 if (open(argv[i], O_RDWR | O_TRUNC) < 0)
 {
 perror("open to truncate failed");
 continue;
 }

 timebuf.actime = statbuf.st_atime;
 timebuf.modtime = statbuf.st_mtime;

 if (utime(argv[i], &timebuf) < 0)
 {
 perror("utime error");
 continue;
 }
 }

 exit(0);
}

 Mkdir and rmdir functions

int mkdir(const char *pathname, mode_t mode);
int rmdir(const char *pathname);

These are system calls for the popular utilities (mkdir and rmdir).

CS590 – Adv UNIX Programming Summer 2010 Page 10

 Richard Johnson 5/29/10

 Reading directories

DIR *opendir(const char *pathname);
struct dirent *readdir(DIR *dp);
void rewinddir(DIR *dp);
int closedir(DIR *dp);

struct dirent {
 ino_t d_ino; /* inode number */
 char d_name[NAME_MAX + 1]; /* null-terminated filename */
}

These are functions to allow portable reading of directory files.

 Chdir, fchdir, and getcwd functions

int chdir(const char *pathname); /* same as "cd" */
int fchdir(int filedes); /* same as "cd" but to open file */
char *getcwd(char *buf, size_t size); /* same as "pwd" */

Example:

int main(void)
{
 char *ptr = malloc(1024+1);
 int size = 1024;

 if (chdir("/tmp/richj") < 0)
 {
 perror("chdir failed");
 exit(1);
 }

 if (getcwd(ptr, size) == NULL)
 {
 perror("getcwd failed");
 exit(1);
 }

 printf("cwd = %s\n", ptr);
 exit(0);
}

CS590 – Adv UNIX Programming Summer 2010 Page 11

 Richard Johnson 5/29/10

 Special device files

All device drivers in UNIX can also be represented as files.
The system stores most special device files in the "/dev" directory, but not required.

Each device file has two numbers that identify it to the kernel (i.e. major and minor).

The major number identifies the driver within the kernel that supports this device file.
The minor number specifies "options" to that driver.

Note: Use <sys/sysmacros.h> for macros to determine major and minor numbers.

Example:

int main(int argc, char **argv)
{
 int i;
 struct stat buf;

 for (i = 1; i < argc; i++)
 {
 printf("%s: ", argv[i]);

 if (lstat(argv[i], &buf) < 0)
 {
 perror("lstat failed");
 exit(1);
 }

 printf("dev = %d / %d", major(buf.st_dev), minor(buf.st_dev));

 if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st_mode))
 {
 printf(" (%s) rdev = %d / %d",
 (S_ISCHR(buf.st_mode)) ? "char" : "block",
 major(buf.st_rdev),
 minor(buf.st_rdev));
 }
 printf("\n");
 }

 exit(0);
}

CS590 – Adv UNIX Programming Summer 2010 Page 12

 Richard Johnson 5/29/10

 Sync and fsync functions

void sync(void);
int fsync(int filedes);

Most UNIX systems have a buffer cache in the kernel through which most I/O passes.

The sync function queues modified block buffers for writing and returns.
Sync is normally called every 30 seconds by the operating system.

The function fsync performs a similar action for a single file, but waits on I/O to finish.

