
CS590 – Adv UNIX Programming Summer 2010 Page 1

 Richard Johnson 4/18/10

Lecture # 1 – Introduction (Chapters 1 & 2)

 Motivation

The UNIX operating system consists of several main components:

Hardware
Kernel - Input / Output, Memory Management, Process Management, IPC

System Call Interface
Application Programs Bourne C - shell Korn shell Perl

1. Hardware

2. Kernel

The kernel is responsible for interacting with the hardware, and providing central
services like I/O, Memory Management, Process Management, and Interprocess
Communication. Application programs obtain access to the kernel through the
system call interface.

3. System Call Interface

The system call interface is a collection of function calls, which provide wrappers
for actual system calls. We will spend much of this term examining calls in the
system call interface.

4. Application Layer

This is where application programs are written, and the different shells reside (i.e.
a shell is nothing more than an application program that provides you an interface
into UNIX).

 Files and Directories

Review the directory structure of UNIX.
Review "/", ".", and ".."
Review absolute versus relative paths
Review file and directory permissions and their affects.
Review file and directory manipulation commands.

CS590 – Adv UNIX Programming Summer 2010 Page 2

 Richard Johnson 4/18/10

Example: C program to emulate basic "ls" command

#include <stdlib.h>
#include <sys/types.h>
#include <stdio.h>
#include <dirent.h>

void main(int argc, char **argv)
{
 DIR *dp;
 struct dirent *dirp;

 if (argc != 2)
 {
 fprintf(stderr, "usage: %s <dir>\n", argv[0]);
 exit(1);
 }

 if ((dp = opendir(argv[1])) == NULL)
 {
 fprintf(stderr, "Cannot open directory %s\n", argv[1]);
 exit(2);
 }

 while ((dirp = readdir(dp)) != NULL)
 printf("%s\n", dirp->d_name);

 closedir(dp);
 return(0);
}

 I/O

File descriptors are small nonnegative integers that the kernel uses to identify the files
being accessed by a particular process.

All shells open 3 file descriptors by default- stdin (0), stdout (1), and stderr (2).

Unbuffered I/O - open, read, write, lseek, and close.
Standard I/O - printf, fprintf, fgets, etc.

CS590 – Adv UNIX Programming Summer 2010 Page 3

 Richard Johnson 4/18/10

Example: (copy stdin to stdout using buffered I/O)

#include "ourhdr.h"

#define BUFFSIZE 8192

int main(void)
{
 int n;
 char buf[BUFFSIZE];

 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");

 if (n < 0)
 err_sys("read error");

 exit(0);
}

Example: (copy stdin to stdout using stdio)

#include "ourhdr.h"

int
main(void)
{
 int c;

 while ((c = getc(stdin)) != EOF)
 if (putc(c, stdout) == EOF)
 err_sys("output error");

 if (ferror(stdin))
 err_sys("input error");

 exit(0);
}

CS590 – Adv UNIX Programming Summer 2010 Page 4

 Richard Johnson 4/18/10

 Programs and Processes

Program - an executable file.
Process - an executing instance of a program along with its associated environment.

Every UNIX process is guarenteed to have a unique numeric identifier called the process
identifier (PID). The PID is always a nonnegative integer.

Example: print my PID

int main(void)
{
 printf("Hello world for Pid = %d\n", getpid());
 exit(0);
}

 Process Control

We will spend a great deal of time working with creating and destroying processes during
this course.

Example: (very basic shell)

#include <sys/types.h>
#include <sys/wait.h>
#include "ourhdr.h"

int main(void)
{
 char buf[MAXLINE];
 pid_t pid;
 int status;

 printf("%% "); /* print prompt (printf requires %% to print %) */

 while (fgets(buf, MAXLINE, stdin) != NULL) {
 buf[strlen(buf) - 1] = 0; /* replace newline with null */

 if ((pid = fork()) < 0)
 err_sys("fork error");

 else if (pid == 0) { /* child */
 execlp(buf, buf, (char *) 0);
 err_ret("couldn't execute: %s", buf);
 exit(127);
 }

CS590 – Adv UNIX Programming Summer 2010 Page 5

 Richard Johnson 4/18/10

 /* parent */
 if ((pid = waitpid(pid, &status, 0)) < 0)
 err_sys("waitpid error");
 printf("%% ");
 }
 exit(0);
}

 Error Handling

When most system calls fail, they return a negative integer, and set the value of errno to
include more information about the error.

Both strerror and perror can be used to obtain error messages. Strerror allows you to
specify a error number, and gives you the associated message while perror prints the
message for the current value of errno.

extern int errno;

char *strerror(int errnum);
void perror(const char *msg);

Example: (using strerror and perror)

#include <errno.h>
#include "ourhdr.h"

int
main(int argc, char *argv[])
{
 fprintf(stderr, "EACCES: %s\n", strerror(EACCES));

 errno = ENOENT;
 perror(argv[0]);

 exit(0);
}

 User Identification

Every user in UNIX is assigned a unique user identification number (UID).
Every user belongs to at least one UNIX group identified by the GID.

The root user always has a UID of 0.

CS590 – Adv UNIX Programming Summer 2010 Page 6

 Richard Johnson 4/18/10

Example:

int main(void)
{
 printf("uid = %d, gid = %d\n", getuid(), getgid());
 exit(0);
}

 Signals

Signals are the most basic form of interprocess communication. They are a technique to
notify a process that some condition has occurred. We will examine signals in much
more detail later in the course.

 UNIX Time Values

Two major time values maintained by UNIX:

1. Calendar time

This value is the number of seconds since the Epoch (00:00:00 Jan 1, 1970 UTC).
The primitive system data type time_t holds these time values.

2. Process time

Also called CPU time, measures CPU resources used by a process.
Process time is measured in clock ticks (i.e. 50, 60, or 100 ticks per second).
CLK_TCK stores in the number of clock ticks per second.

 UNIX maintains at least 3 times for each process: clock time, user time, and system time.

 Clock time is also called wall clock time.
 User time is the CPU time attributed to executing user instructions.
 System time is the time the kernel spent executing instructions on the processes behalf.

 System calls and Library functions

All variants of UNIX provide a well-defined, limited number of entry points directly into
the kernel called system calls.

In UNIX, each system call has a function of the same name in the standard C library.

The user process calls this function, and the function invokes the correct kernel service
using whatever technique is appropriate for that variant of UNIX.

