
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 1/25/09

Lecture #8 – Interactive C and TC Shells (Chapter 9)

 Introduction

Both C and TC shells provide interactive features not available in Bourne shell
Programming interfaces of C and TC shells are nearly identical
TC Shell provides a number of interactive improvements over C shell

 Initialization files

The global files /etc/csh.cshrc and /etc/csh.login are executed first
The $HOME/.login file is executed once on login

The user specific files $HOME/.cshrc or $HOME/.tcshrc are execute on login, and every
time a new subshell is started.

 Search path

% set path = (/usr/bin /usr/ucb /bin /usr .)
% echo $path
/usr/bin /usr/ucb /bin /usr .
% echo $PATH
/usr/bin:/usr/ucb:/bin:/usr:.

Note: You will probably want to set the path in the .login file since .cshrc can be re-
executed when a subshell is started.

 The prompts

The C-shell has two prompts: the primary prompt (%) and the secondary prompt (?).
The TC-shell uses a ‘>’ as its primary default prompt

% set prompt = “$LOGNAME > “
richj >

 Exit status

% grep “nicky” /etc/passwd
% echo $status
1

 Command line history

set history = 100 (keep X commands for this login session)
 set savehist = 20 (keep X commands across logins)
 "history" displays saved commands (may need to pipe through more)

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 1/25/09

 Re-executing commands:

 % date
 Mon Apr 26 12:27:35 PST 2004

 # Re-execute the previous command

% !!
 date
 Mon Apr 26 12:28:25 PST 2004

 # Run command number 3 from history
 % !3
 date
 Mon Apr 26 12:28:25 PST 2004

 # Rerun the latest command starting with “d”
 % !d
 date
 Mon Apr 26 12:28:25 PST 2004

 # Rerun last command with some substitutions
 % dare
 dare: Command not found
 % ^r^t
 date
 Mon Apr 26 12:28:25 PST 2004

 Command line editing (TC shell only)

The command line can be edited by using the same key sequences that you use in either
the emacs or vi editors.

You can use editor commands to scroll up and down the history list.

The “bindkey” built-in command is used to select either vi or emacs:

 % bindkey –v # select vi
 % bindkey –e # select emacs

 Aliases

An alias is a user-defined abbreviation for a command.

Example:

% alias ll ls -lg

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 1/25/09

 % ll

Its also legal to alias existing commands (but not recommended)
(% alias ls ls -lg, commonly done with rm -i)

 alias <cmd> gives the current contents of the alias for that cmd
 unalias <cmd> removes the alias for that command
 alias without any args displays all current aliases

Argument substitution (% alias last echo \!:$ would give you last argument)
 (i.e. % last this is a string, would yield "string")

 Job Control

Jobs Lists all the jobs running
^Z (control-Z) Stops (suspends) the job; the prompt appears on the screen
bg Starts running the stopped job in the background
fg Brings a background job into the foreground
kill Sends a kill signal to a specified job

% find /usr -name ace -print > findout &
[1] 26041

% jobs
[1] + Stopped vi filex
[2] + Running find ...

 % fg %1
 vi filex

 Tilde expansion

The tilde (~) character by itself exapdns to the full name of the user’s home directory.
Tilde followed by a username expands to the full name of that user’s home directory.

% echo ~
/home/richj
% echo ~ann
/home/ann

 Filename completion

C shell provides a shortcut metghod for typing filenames called file completion.

% set filec
% ls

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 1/25/09

rum rumple rumplestilsken run2

% ls ru<ESC> # terminal beeps since there are multiple matches
% ls rum^D # show all possible matches
rum rumple rumplestilsken

% ls rump<ESC>
rumple

 I/O redirection

>& redirect stdout and stderr to a file

% cat x
cat: x: No such file or directory
% cat y
This is y.
% cat x y >& hold
% cat hold
cat: x: No such file or directory
This is y.

>>& appends stdout and stderr to a file

 % cat x y >>& hold

|& pipes stdout and stderr of left hand side to stdin of right hand side

 Variables

All variables are strings like Bash
Can treat strings that contain numbers as numeric (expr)

set, @, setenv to manipulate variables
set assumes a non-numeric string
@ works only with numbers
setenv is similar to export

% set name = fred
% echo $name
fred
% set
argv ()
home /home/jenny
name fred
shell /bin/csh

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 1/25/09

status 0

set variable (without string makes it the null string)
unset variable (actually deletes variable)

 Environment variables

setenv is used in C-shell much the same way as export in Bourne shell.

% setenv TERM vt100
% setenv PERSON “Nelly Nerd”

 Arrays of variables

must be declared before use

% set colors = (red green blue orange yellow)
% echo $colors
red green blue orange yellow
% echo $colors[3]
blue
% echo $colors[2-4]
green blue orange

% set shapes = ('' '' '' '' '')
% set shapes[4] = square

 % set days = (Monday Tuesday)
 % shift days
 % echo $days
 Tuesday

 Numeric variables

@ variable operator expression
See page 358 for list of expressions

% @ count = 0
% echo $count
0
% @ count = (5 + 2)
% echo $count
7

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 1/25/09

 Miscellaneous

Braces {} can be used to separate variable from text without space
Example: % set prefix = Rich
 % echo ${prefix}ard

$#variable is number of elements in array
$?variable is true (1) if defined and false(0) otherwise

 Shell variables

$argv for command line args
argv[0] is name of calling program
argv[1] is first arg, etc
all args ($argv[*] or $*)
specific arg ($argv[n] or $n)

$#argv is number of command line args

$cwd is current working directory
$HOME, $PATH

% setenv PATH (/usr/bin /usr/ucb .)

$prompt similiar to PS1

$status is status of last command

$$ is current PID

