
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 1/17/09

Lecture # 5 – Regular Expressions (Chapter 3)

 Regular Expressions

A regular expression (regexp) defines a set of one or more strings of characters.

Used in many utilities - ed, vi, emacs, grep, awk, sed

Regular expressions are often enclosed in a pair of delimiters - (Usually forward slash)

 Simple Strings can be regular expressions

Examples: /day/ day, today, Monday
 /or not/ or not, poor nothing

 $ grep “day” testfile
 $ grep “or not” testfile

 Regular Expression Metacharacters

1. Period (.) matches any single character

/.alk/ will talk, may balk
/.ing/ singing, ping, before inglenook

 $ grep ‘.alk’ myfile

2. Square Brackets [] = character class, matches any one character from class

/[bB]ill/ bill, Bill
/t[aeiou].k/ talkative, stink, teak, tanker
/number [6-9]/ number<space><6 or 7 or 8 or 9>

Caret (^) within brackets means any character not in the set

 /[^a-zA-Z]/ any character that is not a letter (i.e. 1, 7, @, !)

 $ grep ‘[^A-Z]’ myfile
 $ grep ‘[aAbB]’ myfile

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 1/17/09

3. Asterisk (*) = zero or more occurrences of the preceding character

/ab*c/ single 'a' followed by zero or more 'b' followed by single 'c'
 ac, abc, abbc, debbcaabbbc

/ab.*c/ ‘ab’ followed by zero or more characters then a ‘c’
 abc, abxc, ab45c, xab 756.345 x cat

/t.*ing/ ting, thing, I thought of going

/[a-zA-Z]*/ any string without numbers or punctuation

4. Caret (^) = beginning of line anchor

/^T/ Line beginning with T
/^[0-9]/ Line beginning with a digit

5. Dollar ($) = end of line anchor

/:$/ Line ending with ‘:’
/^Test$/ Line with Test by itself

6. Backslash (\) = quoting special characters

/end\./ The end.
/\[5\]/ it was five [5]
/and\/or/ and/or (Note: most allow alternate delimiters, i.e. –and/or-)

 In general, regular expressions match the longest possible string from left of line

/(.*)/ matches longest string between (and)
/[^)]*)/ matches shortest string with (and)

 Bracketing Expressions

1. The Replacement String

Ampersand (&) takes the value of a matched string

:s/[0-9][0-9]*/NN&NN/ matches a number and puts NN before and after

 Why have [0-9] followed by [0-9]* ?

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 1/17/09

2. Quoted Digit

Quoted Digit (\n) takes on the value of the string that the bracketed expression
beginning with the nth matched

Last name, first name and we want to change to first name last name
:1,$s/\([^,]*\), \(.*\)/\2 \1/

1,$ means all lines s means substitute
Take everything up to a comma = \1, all else \2 and then switch them around

 Extended regular expressions

Plus (+) matches one or more characters
Question (?) matches zero or one characters
Pipe (|) means or

Examples:

 /ab+c/ “a” followed by one or more “b” followed by a “c”
 /ab?c/ “a” optionally followed by a “b”, then followed by a “c”
 /(ab)+c/ one or more occurrences of “ab” followed by a “c”

 /ab|ac/ either “ab” or “ac” (i.e. /a[bc]/)
 /^Exit|^Quit/ lines that start with “Exit” or “Quit”

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 1/17/09

Using Grep (Chapter 4)

 Origins of the grep utility

Grep can be traced back to the “ex” editor (predecessor to “vi”).

The “ex” command:

 :/pattern/p print the first line matching the pattern
 :g/pattern/p print all lines matching the pattern.

Since the pattern is often a regular expression, this could also be written:

 :g/RE/p

 Common options for grep

-c displays a count of matching lines rather than displaying the actual lines
-h does not display filenames
-i ignores case of letters when making comparisons
-l list only the names of files with matching lines
-n precedes each line by its relative line number
-s work silently (i.e. display nothing but error messages)
-v invert the search (i.e. display only lines that do not match)

 Exit status

 pattern is found in at least one line
 pattern not found
 file not found

 Examples of grep with regexp (using data file from p. 86)

Search for the string “NW” in the file “datafile”:
$ grep NW datafile

Search for the string “NW” in all files starting with “d” in the current directory:

$ grep NW d*

Print all lines that begin with a “n”:
 $ grep ‘^n’ datafile

Print all lines that end with a “4”:
 $ grep ‘4$’ datafile

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 1/17/09

Search for “TB Savage”:
 $ grep ‘TB Savage’ datafile

Search for 5 followed by a literal period followed by any character:
 $ grep ‘5\..’ datafile

 Print all lines containing one non-digit:
 $ grep ‘[^0-9]’ datafile

 Print all lines with at least 9 consecutive lowercase letters:
 $ grep ‘[a-z]\{9\}’ datafile

 Examples with options

Print all lines that begin with “south” including line numbers:
 $ grep –n ‘^south’ datafile

Print all lines with “pat” regardless of case:
 $ grep –i “pat” datafile

Print all lines that do not contain ‘Suan Chin’:
 $ grep –v ‘Suan Chin’ datafile

Print just the filenames of files containing lines with “SE”:
 $ grep –l ‘SE’ *

Print the number of lines containing “west”:
 $ grep –c ‘west’ datafile

 egrep (extended grep)

Similar to regular grep, except it uses extended regular expressions.

Includes the following meta characters:

 + matches one or more of the preceding characters
 ? matches zero or one of the preceding characters
 a | b matches either a or b
 () groups characters

Examples:

 Print lines that contain NW or EA:
 $ egrep ‘NW|EA’ datafile

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 1/17/09

 Print lines that contain one or more 3’s:
 $ egrep ‘3+’ datafile

 Print lines that have a ‘2’ with or without a period and a digit:
 $ egrep ‘2\.?[0-9]’ datafile

 Print lines with one or more occurrences of “no”:
 $ egrep ‘(no)+’ datafile

 GNU grep

GNU grep (i.e. the one that comes with Linux) has similar functionality as UNIX grep,
and some additional improvements.

GNU grep combines the functionality of grep and egrep (i.e. grep –E).

GNU grep supports POSIX character classes:

 [:alnum:] alphanumeric char
 [:alpha:] alphabetic char
 [:cntrl:] control char
 [:digit:] numeric char
 [:lower:] lowercase char
 [:upper:] uppercase char
 [:punct:] punctuation char
 [:space:] whitespace

 Examples:

 Print lines with a space, a period, a digit, and a space.

 $ grep ‘[[:space:]]\.[[:digit:]][[:space:]]’ datafile

 GNU grep supports additional options:

 -A # Prints # lines of trailing context after matching lines
 -B # Prints # lines of leading context before matching lines
 -L Print just the names of all files where the pattern does not match
 -m # Stop reading a file after # of matching lines

