
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 4/4/09

Lecture #19 – Perl Part III

 Subroutines

Defined with keyword “sub”, and referenced like function calls in other languages.

Example:

sub razzle
{
 print “You have been razzled.\n”;
}

razzle();

Parameters (Arguments) to subroutines are treated as a flat list of scalars, and are stored
in the @_ array.

In other words, the first argument to the subroutine could be referenced as $_[0], and the
second as $_[1], etc.

Example:

 sub myenv
 {
 my ($key, $value) = @_;

 $ENV{$key} = $value unless $ENV{$key};
 }

Example:

 sub max
 {
 my $max = shift(@_);

 for my $item (@_)
 {
 $max = $item if $max < $item;
 }

 return $max;
 }

 $best = max($mon, $tue, $wed, $thu, $fri, $sat, $sun);
 $best_weekend = max($sat, $sun);

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 4/4/09

Note: All arguments to a subroutine are passed as one long list of scalars. When passing
multiple arrays, it maybe useful to pass references instead.

Example:

 @c = (1, 2, 3);
 @d = (1, 2, 3, 4);

 ($aref, $bref) = func(\@c, \@d);
 print “@$aref has more than @$bref\n”;

 sub func
 {
 my ($cref, $dref) = @_;

 if (@$cref > @$dref)
 {
 return ($cref, $dref);
 }
 else
 {
 return ($dref, $cref);
 }
 }

 Packages and Modules

Modules are written to accomplish tasks not implemented by Perl's built-in functions.

The module is the fundamental unit of code reuse in Perl. Under the hood, it’s just a
package defined in a file of the same name (with .pm on the end).

Perl comes with many modules on installation. Many more can be found at the
Comprehensive Perl Archive Network (CPAN). See http://www.cpan.org.

Modules come in two flavors – traditional and object oriented. Traditional modules
define subroutines and variables for the caller to import and use. Object-oriented
modules function as class definitions and are accessed through method calls.

Modules are included in your program with the “use” or “require” statement:

use MODULE; (Example: use CGI;)
 require MODULE;

“use” works at compile time, and “require” at run-time.

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 4/4/09

 The CGI Module

CGI (Common Gateway Interface) programs provide one mechanism for running code
from a web page.

Specifically, CGI programs obtain input parameters via the web browser interface (via
GET or POST methods), and these programs return HTML code as their output.

Perl is one of the more popular ways to implement CGI programs primarily because of
the CGI module available for Perl.

Example (HTML):

 <HTML>
 <HEAD>
 <TITLE>Are you old enough to vote?</TITLE>
 </HEAD>
 <BODY>
 <H1>Are you old enough to vote?</H1>
 <P>
 <FORM ACTION=”voter.cgi” METHOD=GET>
 Age: <INPUT TYPE=”text” NAME=”age”>
 </FORM>
 </P>
 </BODY>
 </HTML>

Example (CGI):

 use CGI;
 $query = new CGI;

 # Obtain the “age” data from the web interface

 if ($query->param(“age”) >= 18)
 {
 $voter = “yes”;
 }
 else
 {
 $voter = “no”;
 }

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 4/4/09

 # Print output in HTML

 print $query->header;
 print “<HTML><HEAD>\n”;

print “<TITLE>Are you old enough to vote?</TITLE>\n”;
print “</HEAD><BODY>\n”;
print “<H1>Are you old enough to vote?</H1>\n”;

if ($voter eq ‘yes’)
{
 print “<P>You are old enough!</P>\n”;
}
else
{
 print “<P> You are not old enough yet!\n”;
}

print “</BODY></HTML>\n”;

 Misc. Examples

Example: (wc)

while (<STDIN>)
{
 $line++;
 $char += length;
 $word += split;
}

 print "$line $word $char\n";

 Example: (wc_improved)

sub count
{
 my ($fh, $name) = @_;

 my $line = 0;
 my $char = 0;
 my $word = 0;

 while (<$fh>)
 {
 $line++;
 $char += length;

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 4/4/09

 $word += split;
 }

 print "$line $word $char\t$name\n";
}

if ($#ARGV < 0)
{
 count(*STDIN, "STDIN");
}
else
{
 foreach (@ARGV)
 {
 open(F, $_) || die "cannot open $_\n";
 count(*F, $_);
 close(F);
 }
}

Example: (lower)

$count = 0;
$total = 0;

foreach $file (`ls`)
{
 # convert filename to lowercase
 chomp($file);
 $lower = $file;
 $lower =~ tr/A-Z/a-z/;

 # skip this file if its already lowercase
 next if $file eq $lower;

 # make sure not to overwrite another file by accident
 next if -e $lower && print "cannot rename $file: already exists\n";

 # rename the file, and track the count
 $status = system("mv $file $lower");
 $count++;
}
continue
{
 $total++
}

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 4/4/09

Report the stats
print "$count of $total files successfully renamed\n";

 Example: (upper)

use strict;

my $fname = "input.txt";

open(F, $fname) || die "Cannot open file $fname\n";
open(OUT, ">upcase.txt") || die "Cannot open output file.\n";

while (<F>)
{
 tr/a-z/A-Z/;

 print OUT $_;
 print $_;
}

close(F);
close(OUT);

