
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 4/4/09

Lecture #18 – Perl Part II

 Global special arrays and hashes

@ARGV = command line args
%ENV = environment variables

 Example:

$count = 1;

foreach (@ARGV)
{
 print "Arg $count = $_\n";
 $count++;
}

 Example:

foreach $key (sort keys %ENV)
{
 print "$key = $ENV{$key}\n";
}

 Global special file handles

ARGV = file handle to iterate over command line arguments
STDERR
STDIN
STDOUT

Example:

$count = 1;

while ($line = <ARGV>)
{
 print "Arg $count = $line\n";
 $count++;
}

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 4/4/09

 String operator

Concatenation operator "." is used to add strings together:

 print 'abc' . 'def'; # prints abcdef
 print $a . $b; # prints value of a followed by value of b

Binary "x" is repetition operator:

 print '-' x 80; # prints row of 80 dashes
 @ones = (1) x 80; # list of 80 1's

 Perl regular expressions

Perl recognizes most of the regexp syntax that we have discussed earlier, and includes
some additional syntax of its own:

\b “word” boundary
\B not a “word” boundary

\w any single character classified as a “word” character (alphanumeric and “_”)
\W any single non-“word” character

\s any whitespace character (space, tab, or newline)
\S any non-whitespace character

\d any digit character (i.e. [0-9])
\D any non-digit character

\A match only at beginning of string
\Z match at end of string, on or before newline at end
\z match at end of string

Examples:

 /\d\d:\d\d:\d\d/ time format hh:mm:ss
 /[\d\s]/ any single digit or whitespace char
 /\w\W\w/ word char, then non-word char, then word char
 /[a-z]+\s+\d*/ lowercase word, some whitespace, possibly some digits
 /\d{4}/ 4 digit number

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 4/4/09

 Pattern matching operators

m/pattern/[flag] match

where flag is:
 g match globally (i.e. find all occurrences)
 i case insensitive
 m treat string as multiple lines
 s treat string as single line
 x use extended regular expressions

Example:

 if ($shire =~ m/Baggins/) { # same as if ($shire =~ /Baggins/)
 print “$shire matches Baggins”;
 }

 if (m/Baggins/) {
 print “$_ matches Baggins”;
 }
Example:

 $string = “password=abc verbose=9 score=1”;
 %h = $string =~ /(\w+)=(\w+)/g;

 foreach $value (sort keys %h)
 {
 print “$value = $h{$value}\n”;
 }

s/pattern/replacement/[flag] substitution

Example:

 $t = “This is a test”;
 $t =~ s/a/an/;
 $t =~ s/test/exam/g;
 print “$t\n”; # This is an exam

 $count = $t =~ s/exam/interrogation/;
 print “$t\n”; # This is an interrogation
 print “$count\n”; # 1

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 4/4/09

Example:

$t = "16";

$t =~ s/([0-9]+)/nn $1 nn/; # replace num with “nn <num> nn”
$t =~ s/([0-9]+)/sprintf("%#x", $1)/ge; # translate num to hex

 print “$t\n”; # nn 0x10 nn

tr/pattern1/pattern2/[flag] transpose

where flag is:
 c complement pattern1
 d delete found be unreplaced char
 s squash duplicate replaced char

Example:

 $t = “this is a test”;

 $t =~ tr/a-z/A-Z/;
 print “$t\n”; # THIS IS A TEST

 Advanced String Matching

Example:

Create an Array using the directory listing
@dir_array = `ls -l`;

print "Here is the directory again:\n";
print @dir_array, "\n";

print "Here are the perl programs:\n";

$pattern = '\s+(\w+\.+pl)\s'; #Define a pattern using "regular expressions"

Meaning "\s+" - at least one or more spaces or tabs
"\w+" - at least one or more alpha-numeric characters
"\.+" - a period or dot
"pl" - the proper "pl" extender
"\s" - a trailing space

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 4/4/09

$j=0;

for ($i=0; $i <= $#dir_array; $i++) # Loop through all lines
{

if ($dir_array[$i] =~ $pattern)
 {

print $1, "\n";
 $perlprogs[$j] = $1;

$j++;
 }

}

print "The program names are also stored in an array: ";
$, = ", "; # Make OFS a comma
print @perlprogs;
print "\n";

Example (Regular Expression matching):

sub print_array # Print the full contents of the Array
{

for ($i=0; $i<=$#strings;$i++)
 {

print $strings[$i], "\n";
}
print "\n\n";

}

sub grep_pattern # Print strings which contain the pattern
{
 print "Searching for: $pattern\n";

foreach (@strings)
{

print "$_\n" if /$pattern/;
}
print "\n\n";

}

Setting up the Array of strings

@strings = ("Two, 4, 6, Eight", "Perl is cryptic", "Perl is great");

@strings[3..6] = ("1, Three", "Five, 7", "Write in Perl", "Programmer's heaven");
print_array;

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 4/4/09

Find the word "Perl"
$pattern = 'Perl';
grep_pattern;

Find "Perl" at the beginning of a line
$pattern = '^Perl';
grep_pattern;

Find sentences that contain an "i"
$pattern = 'i';
grep_pattern;

Find words starting in "i", i.e. a space preceeds the letter
$pattern = '\si';
grep_pattern;

Find strings containing a digit
$pattern = '\d';
grep_pattern;

Search for a digit followed by some stuff
$pattern = '\d+.+';
grep_pattern;

Find strings with a digit at the end of a line
$pattern = '\d+$';
grep_pattern;

Search for a digit, possible stuff in between, and another digit
$pattern = '\d.*\d';
grep_pattern;

Find four-letter words, i.e. four characters offset by word boundaries
$pattern = '\b\w{4}\b';
grep_pattern;

Sentences with three words, three word fields separated by white space
$pattern = '\w+\s+\w+\s+\w+';
grep_pattern;

Find sentences with two "e" letters, and possible stuff between
$pattern = 'e.*e';
grep_pattern;

Marking Regular Expression Sub-strings and Using Substitution

CS390 – UNIX Programming Spring 2009 Page 7

 Richard Johnson 4/4/09

Substitute "Pascal" for "Perl" words at the beginning of a line
print "Substituting first Perl words.\n";
foreach(@strings)
{

s/^Perl/Pascal/g;
}
print_array;

Find five-letter words and replace with "Amazing"
$pattern = '\b\w{5}\b';
print "Searching for: $pattern\n";
foreach(@strings)
{

s/$pattern/Amazing/;
}
print_array;

Replace any "Perl" words at the end of a line with "Cobol"
print "Substituting Final Perl \n";
foreach(@strings)
{

s/Perl$/Cobol/;
}
print_array;

Delete any apostrophes followed by an "s"
print "Substituting null strings\n";
foreach(@strings)
{

s/\'s//; # Replace with null string
}
print_array;

Search for two digits in same line, and switch their positions
print "Tagging Parts and Switching Places\n";
foreach(@strings)
{

$pattern = '(\d)(.*)(\d)';

if (/$pattern/)
{

print "Grabbed pattern: $pattern \$1 = $1 \$2 = $2 \$3 = $3\n";
s/$pattern/$3$2$1/;

}
 }

CS390 – UNIX Programming Spring 2009 Page 8

 Richard Johnson 4/4/09

 File and I/O

Example (reading user input from the keyboard):

print "Enter a file name:";
chomp($fname = <STDIN>); # chomp removes the newline from the input

Example (reading a file - Slurping):

open (FPTR,$fname) || die "Can't Open File: $fname\n";

@filestuff = <FPTR>; #Read the file into an array

 print "The number of lines in this file is ",$#filestuff + 1,"\n";
print @filestuff;

close (FPTR);

 Note: This method is BAD for big files since we need RAM for entire file.

Example (primitive file copy – convert to uppercase):

open (FPTR,$fname) || die "Can't Open File: $fname\n";
 open (OUTFILE, ">upcase.txt") || die "Can't open output file.\n";

 while (<FPTR>)
 {
 tr/a-z/A-Z/;

 print OUTFILE, $_;
 }

 close(FPTR);
 close(OUTFILE);

 Built-in Functions

There are many built-in functions many resembling functions provided in C or one of the
other scripting languages. See man pages, or reference material for a list

