
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 3/28/09

Lecture #17 – Perl Part I

 Background

Written by Larry Wall and was first posted to comp.sources in late 1987
Perl stands for Practical Extraction of Report Language (among other things)
Wall quips it also stands for “Pathologically Eclectic Rubbish Lister”
Originally designed for text processing language
Grown into general purpose programming language
Generally a simple language, but it is very feature rich (lot to learn)

Version 4 out in 1987, and was considered a stable, standard UNIX prog language
Version 5 came out later that year, and is now a good general programming language

“Perl is designed to make the easy jobs easy, without making the hard jobs impossible”
"There's more than one way to do it"
Rich with non-orthogonality and shortcuts

 A First Perl Program

#!/usr/bin/perl –w

use strict; # force variables to be assigned before use
print "What is your username? "; # output a question to user
my $username; # "declare" a variable
$username = <STDIN>; # assigned value to variable
chomp($username); # cut off newline character
print "Hello, $username.\n"; # print out a greeting

 Program Structure

Syntax is fairly forgiving

1. whitespace - only required between items that would be otherwise confused as

one item.

Includes spaces, tabs, newlines, and comments

2. semicolon - all simple statements end with a semicolon (;)

compound statements are enclosed in braces {} and do not need one
also last statement in a block does not need a semicolon

3. declarations - only required for subroutines and report formats

4. comments - follow # just like most other scripting languages

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 3/28/09

 Data Types

1. Scalar = simple variable (preceded with $); include number, string, or references

Ex: The string "foobar" (i.e. $answer = foobar;)
 The number 3 (i.e. $number = 3;)
 The number 3.5 (i.e. $number = 3.5;)

Generally no need to specify if something is string, float, integer, etc since Perl
can usually figure it out.

Strings:
 Sequence of characters usually delimited by ' or "

Memory does not need to be allocated; they grow and shrink as necessary

 Numbers:
 Stored as signed integers or double precision floating point

 Ex: $sign = “I love my $pet”;
 $cost = ‘It costs $100’;
 $cwd = `pwd`;
 $exit = system(“vi $file”);

2. Arrays = ordered list of scalar with index starting at 0 (start with @)

(); # the empty list
qw//; # another empty list
("a", "b", "c", 1, 2, 3) # a list with six elements
qw/Hello World How are you/ # a list with five elements

assign 3 values to array home

@home = (“couch”, “chair”, “table”);

OR

$home[0] = “couch”;
$home[1] = “chair”;
$home[2] = “table”;

assign 3 elements of home into scalars

($potato, $lift, $tennis, $pipe) = @home;

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 3/28/09

3. Hashes = unordered sets of key/value pairs with keys as subscripts (start with %);
similar to associative arrays

%longday = (“Sun”, “Sunday”, “Mon”, “Monday”);

OR

%longday = (
 “Sun” => “Sunday”,
 “Mon” => “Monday”
);

 Variables

Start with $, @, or % to identify data type
begin with letter or underscore
can contain letters, underscore, and digits (max length 255)

Ex:
 $age = 26;
 @date = (8, 24, 70)

 %fruit = ('apples', 3, 'oranges' , 6)

 OR

 %fruit = (
 apples => 3,
 oranges => 6
)
Ex:
 my @stuff = qw/a b c/; # three elements
 my @things = (1, 2, 3, 4); # four
 my $oneThing = "all alone";
 my @allOfIt = (@stuff, $oneThing, @things); # eight elements

Ex:
 my @someStuff = qw/Hello and welcome/; # three elements

 $#someStuff = 0; # Now just ("Hello")
 $someStuff[1] = "Joe"; # ("Hello", "Joe")
 $#someStuff = -1; # Now empty
 @someStuff = (); # Same as last line

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 3/28/09

Ex:
 my @stuff = qw/everybody wants a rock/
 my @rock = @stuff[1 .. $#stuff]; # qw/wants a rock/
 my @want = @stuff[0 .. 1]; # qw/everybody wants/
 @rock = @stuff[0, $#stuff]; # qw/everybody rock/

Note: It is possible to use arrays as stacks or queues with functions push, pop, unshift

namespace for $, @, and % are separate; therefore, $foo and @foo are different variables
variable names are case sensitive

Several implicit conversions take place…

Ex:
 $b = @c; (num of elements in array c is assigned to b)
 $a = (2, 4, 5, 8); (a is assigned 8)
 $a = [2, 4, 5, 8]; (a is a reference to an unnamed array)

 Ex:
 my @things = qw/a few of my favorite/;
 my $count = @things; # will be 5
 my @moreThings = @things; # same as @things

 Ex:
 my @saying = qw/these are a few of my favorite/;

 my $statement = "@saying things.\n";
 # "these are a few of my favorite things.\n"

 my $stuff = "@saying[0 .. 1] @saying[$#saying – 1, $#saying] things.\n"
 # "these are my favorite things.\n"

 Ex:
 $wife{“Adam”} = “Eve”;
 # hash element is assigned a value of “Eve”

 $wife{“Jacob”} = [“Leah”, “Rachel”, “Bilhah”, “Zil;pah”];
 # assign a reference to an unnamed array to the hash element $wife{“Jacob”}

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 3/28/09

 Control Structures

 if / unless

General Syntax:

 if (exp) { block } else { block }
 unless (exp) { block } else { block }

 if (exp1) {

block1
}

 elsif (exp2) {
block2

}
 else {

block3
}

 Ex:

 if ($debug > 0) {
 print “Debug: Danger Will Robinson\n”;
 }

 if ($city eq “New York”) {
 print “New York is northeast of Washington, D.C.\n”;
 }
 elsif ($city eq “Chicago”) {
 print “Chicago is northwest of Washington, D.C.\n”;
 }
 else {
 print “Don’t know where $city is \n”;
 }

 unless ($destination eq $home) {

 print “I’m not going home\n”;
 }

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 3/28/09

 while / until

General Syntax:

 while (exp) { block }
 until (exp) { block }

 Ex:

 # Read each line from file handle INFILE and write it to file handle OUTFILE

 while (<INFILE>) # could use $line = <INFILE> instead

 {
 print OUTFILE, "$_\n"
 }

 There is an optional continue block executed before loop iteration
 even if main portion of block is skipped (with continue, goto, etc)

 $i = 1;

 while ($i < 10)
 {
 }
 continue
 {
 $i++;
 }

 do while / until

do { block } while (expression);
do { block } until (expression);

 for / foreach

 for loop basically same as C for loop

 for ($i = 1; $i < 10; $i++)
 {
 print “$i\n”;
 }

CS390 – UNIX Programming Spring 2009 Page 7

 Richard Johnson 3/28/09

 foreach var (list)
 {
 block
 }

 foreach loop can also take a continue block

 Ex:

 my @collection = qw/hat shoes shirts shorts/;

 foreach my $item (@collection)
 {
 print "$item\n";
 }

 Ex:

 foreach $key (sort keys %hash) {

 }

 Ex: next and last

 foreach $user (@users) {
 if ($user eq “root” or $user eq “lp” {
 Next;
 }

 if ($user eq “special”) {
 print “Found the special account\n”;
 # processing here
 last;
 }
 }

 Modifiers

 Any simple statement can be followed by a modifier which is a
 shortcut to a compound control structure.

 stmt if EXPR;
 stmt unless EXPR;
 stmt while EXPR;
 stmt until EXPR;

CS390 – UNIX Programming Spring 2009 Page 8

 Richard Johnson 3/28/09

 Ex:
 $i = $num if ($num < 50);
 $lines++ while <FILE>;
 print "$_\n" until /The End/;

 Loop Control

 can name loops with a label

 LINE: while (<SCRIPT>)
 {
 print;
 next LINE if /^#/;
 }

 last <label> is basically same as C break
 next <label> is basically same as C continue
 redo <label> restarts loop block without evaluating conditional
 expression or executing the continue block

 Special Variables

 $_ = default input and pattern matching string

 foreach ('hickory', 'dickory', 'doc')
 {
 print;
 }

 Perl assumes $_ if not specified in
 print & unlink
 pattern match ops m//, s///, tr///
 when used without = ~ op
 default iterator var in foreach
 implicit iterator in grep / map
 default place to put line input (i.e. while (<FILE>))

