
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 2/21/09

Lecture #12 – Bash (Chapter 13 and 14)

 Introduction

Bash (Bourne again shell)
Intended to be an upgrade to the original Bourne shell
Contains many influences from csh and ksh
Same basic programming interface as Bourne shell

Originally written by Brian Fox in 1988 (v 0.99), later adopted by Chet Ramey
Current versions are 3.0 ($ bash –version)

 Initialization Files

First, run /etc/profile
Second, run $HOME/.bash_profile if it exists
If $HOME/.bash_profile does not exist, then $HOME/.bash_login is run
If $HOME/.bash_login does not exist, then $HOME/.profile is run
Finally, $HOME/.bashrc is run (name controlled by BASH_ENV variable)

 Shell Options

Just like Korn shell, Bash support many options via the “set” command.

$ set –o allexport # turn on allexport option

Example options:

 allexport

emacs
history
ignoreeof
verbose
vi

 Prompts

Bash uses the same prompt variables as Bourne and Korn shell (PS1, PS2)

Example:

 $ PS1=”$(uname –n) > “
 chargers>

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 2/21/09

Bash supports many special escape sequences for the prompt variables:

 \h hostname
 \s name of the shell
 \d date in Weekday Month Day format (i.e. Tue May 26)
 \t time in HH:MM:SS
 \u current username
 \w current working directory

Example:

 $ PS1=”\u@\h:\w$ “
 richj@chargers:/etc$

 Command history

HISTSIZE controls how many commands are remembered for history
HISTFILESIZE controls how many commands are stored in history file
HISTFILE controls the name of the history file ($HOME/.bash_history)
HISTIGNORE is a colon separated list to decide which commands are stored in history

You can use arrow keys to access commands from history.
You can use the history command to view command history (just like C-shell and Korn)

fc command:

 -e editor puts history list into editor
 -l n-m lists commands in range from n to m
 -n turns off numbering of history list
 -s string accesses command starting with string

 $ fc –l

4 ls
5 history
6 pwd

$ fc –l –2
7 pwd
8 fc –l

You can also use C-shell style command rexecution (i.e. !!)

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 2/21/09

 Command line editing

Bash provides 2 built-in editors (vi and emacs) for command line editing

Example:

 $ set –o vi

Works same way as Korn shell

 Variable basics

Same assignment and naming rules as Korn shell

declare builtin:

 replaces typeset from Korn shell

 -a treat variable as an array
 -f lists function names and definitions
 -F lists just function names
 -i treat variable as integer
 -r makes the variable read only (can also use readonly)
 -x exports variable to subshells (can also use export)

 Example:

 $ declare name=Tommy

 Printf

printf format [argument…]

Example:

 $ printf “%10.2f %5d\n” 10.5 25

 Variable expansion modifiers

${var:-word} if var is set and non-null, sub its value, otherwise word
${var:=word} if var is set and non-null, sub its value, otherwise word;
 make change to var permanently
${var:+word} if var is set and non-null, sub word, otherwise nothing
${var:?word} if var is set and non-null, sub its value, otherwise print word & exit
${var:offset} get substring of value starting at offset
${var:offset:len} get substring of value, starting at offset, for length characters

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 2/21/09

Examples:

 $ fruit=peach
 $ echo ${fruit:-plum}
 peach
 $ echo ${newfruit:-apple}
 apple

${var%pattern} matches smallest trailing portion of value and remove it
${var%%pattern}
${var#pattern}
${var##pattern}

 Arithmetic expansion

Bash supports 2 methods for evaluating arithmetic expressions:

 $[expression]
 $((expression))

Examples:

 $ echo $[5 + 4 – 2]
 7
 $ echo $((5 + 4))
 9

 Reading user input

$ read answer # read line and assign it to answer
$ read first last # read line and assign 1st word to first and rest to last
$ read # read line and assign it to REPLY
$ read –a arrayname # read line into array arrayname
$ read –p prompt # print prompt, wait for input, store result in REPLY

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 2/21/09

 Math

$ declare –i num
$ num=hello
$ echo $num
0
$ num = 5 + 5
bash: +: command not found
$ num=”4 * 6”
$ echo $num
24

$ x=5
$ let x = x + 1
$ echo $x
6
$ let “x += 1”
$ echo $x
7

 Test

Can use both single brackets [], double brackets [[]], and double paren (()).

String test:

 [string1 = string2] string1 equals string2 (whitespace required)
 [string1==string2] alternative in Bash 2.x
 [string1 != string2] string1 not equal string2
 [string] string is not null
 [-z string] length of string is 0
 [-n string] length of string is non-zero
 [-l string] length of string (number of characters)

Logical test:

 [string1 –a string2] both string1 and string2 are true
 [string1 –o string2] either string1 or string2 is true
 [! string1] not string1

 [[pattern1 && pattern2]] both patterns are true
 [[pattern1 || pattern2]] either pattern1 or pattern2 is true
 [[! pattern]] not a pattern match

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 2/21/09

Integer test:

 [int1 –eq int2] int1 equals int2
 [int1 –ne int2] int1 not equal to int2
 [int1 –gt int2] int1 is greater than int2
 [int1 –ge int2] int1 is greater than or equal int2
 [int1 –lt int2] int1 is less than int2
 [int1 –le int2] int1 is less than or equal int2

Examples:

 $ name=Tom; friend=Joseph
 $ [[$name == [Tt]om]]
 $ echo $?
 0
 $ [[$name == [Tt]om && $friend == “Jose”]]
 $ echo $?
 1

 If

Same structure as Korn shell using [...], [[…]], or ((…))

Syntax:

if [expr]
then
 Command
elif [expr]
then
 command
else
 command
fi

Examples:

 if [$age –ge 0 –a $age –le 12]
 then
 echo “a child for sure”
 fi

 if ((age >= 0 && age <= 12))
 then
 echo “a child for sure”
 fi

CS390 – UNIX Programming Spring 2009 Page 7

 Richard Johnson 2/21/09

 Case

Syntax:

 case var in
 value1)
 cmds;;
 value2)
 cmds;;
 *)
 cmds;;
 esac

Example:

 case “$color” in
 [Bb]l??)
 xterm –fg blue –fn terminal &
 ;;
 [Gg]ree*)
 xterm –fg darkgreen –fn terminal &
 ;;
 red | orange)
 xterm –ff “$color” –fn terminal &
 ;;
 *)
 xterm –fn terminal
 ;;
 esac

 For

Syntax:

 for var in word list
 do
 cmds
 done

Example:

 for pal in Tom Dick Harry Joe
 do
 echo “hi $pal”
 done

CS390 – UNIX Programming Spring 2009 Page 8

 Richard Johnson 2/21/09

 for person in $(cat mylist)
 do
 mail $person < letter
 done

 While

Syntax:

 while command
 do
 cmds
 done

Example:

 num=0

 while (($num < 10))
 do
 let num+=1
 done

 Select

Syntax:

 select var in word list
 do
 cmds
 done

Example:

 PS3=”Select a program to execute:”

 select program in ‘ls –F’ pwd date
 do
 $program
 done

