
CS390 – UNIX Programming Spring 2009 Page 1

 Richard Johnson 2/21/09

Lecture #11 – Programming the Korn Shell (Chapter 12)

 Reading user input

Similar to Bourne shell (i.e. $ read answer)

New features:

 # display prompt and read response from single command
 $ read response?”Do you feel okay?”

 # read from file descriptor number 3
 $ read –u3 line

Examples:

 while read –u3 line1 && read –u4 line2
 do
 print “$line1:$line2”
 done 3< file1 4< file2

 Math

$ typeset –i num
$ num=hello
/bin/ksh: hello: nad number
$ num=5 + 5
/bin/ksh: +: not found
$ num=5+5
$ echo $num
10
$ num=”4 * 6”
$ echo $num
24

$ num=15
$ typeset –i2 num
$ print $num
2#1111
$ typeset –i8 num
$ print $num
8#17

CS390 – UNIX Programming Spring 2009 Page 2

 Richard Johnson 2/21/09

The let command and (()):

 $ i=5
 $ let i=i+1
 $ print $i
 6

 $ ((i = i * 6)
 $ print $i
 36

 Control flow commands

In general, Bourne shell syntax will work here (note a few additions)

Ksh supports a new version of the test command using [[]]:

 String tests:

 string = pattern String matches pattern
 string != pattern String does not match pattern
 string1 < string2 ASCII value of string1 is less than string2
 string1 > string2 ASCII values of string1 is greater than string2
 -n string string is nonzero in length, nonnull parameter
 -z string string is zero in length, null parameter

 Examples:

 read answer

 if [[$answer = [Yy]*]]
 then
 echo “yes”
 fi

 Binary file testing:

 file1 –nt file2 File1 is newer than file2
 file1 –ot file2 File1 is older than file2
 file1 –ef file2 File1 is another name for file2

 Logical operators:

 && Logical AND, replaces -a
 || Logical OR, replaces -o

CS390 – UNIX Programming Spring 2009 Page 3

 Richard Johnson 2/21/09

 File tests:

 -a file file exists
 -e file file exists
 -L file file exists and is a symbolic link
 -O file file exists and owned by UID of running shell
 -G file same as -O but for group
 -S file file exists and is a socket

 Numeric testing (can use let command here):

 if (($# < 1))
 then
 print “usage: $0 <number>” 1>&2
 exit 1
 fi

 select command

new command to display menu

Syntax:

select varname [in arg...]
do
 cmds
done

Example:

 PS3=”Please enter which fruit: “

 select fruit in apple banana orange
 do
 case $REPLY in

1) echo “apple”
break;;

2) echo “banana”
break;;

3) echo “orange”
break;;

 done

CS390 – UNIX Programming Spring 2009 Page 4

 Richard Johnson 2/21/09

 Getopts (Option Processing)

UNIX Conventions for command line options

$ ls –l –r –t
$ ls –lrt
$ cc –o prog prog.c

getopts makes processing these options easier
getopts optstring varname [arg …]

optstring is a list of the valid option letters (: follows letter if that option takes arg)
Leading colon means allows you to handle errors with “?” case
Example: “dxo:lt:r” means –d –x –o –l –t –r are valid options, and –o and –t take args

Varname is the variable to use for options (will use cmd line args if not specified)

OPTIND is 1 when scripts starts, and increments after each getopts call
OPTARG is the value of the argument for the option if one is required

Example:

Let’s say we want a program to take:

-b to ignore white space at the start of input lines
-t <dir> use this directory for temporary files
-u translate all output to uppercase

SKIPBLANKS=
TMPDIR=/tmp
CASE=lower

while getopts :bt:u arg
do
 case $arg in

b)
SKIPBLANKS=TRUE;;

t)
 if [-d “$OPTARG”]
 then
 TMPDIR=$OPTARG
 else
 print “$0: $OPTARG is not a directory.”
 exit 1
 fi;;
u)

CS390 – UNIX Programming Spring 2009 Page 5

 Richard Johnson 2/21/09

 CASE=upper;;
:)
 print “$0: You must apply an argument to $OPTARG.”
 exit 1;;
\?)
 print “Invalid option $OPTARG ignored”;;
esac

 done
 shift $((OPTIND-1))

CS390 – UNIX Programming Spring 2009 Page 6

 Richard Johnson 2/21/09

Using VI

 vi History

The original UNIX editor was called ed (line based)
Later, ex was introduced as a superset to ed (added optional screen mode)
Screen mode was so popular; they made a hard link to vi, which starts ex in screen mode
Linux introduced “vim” which is “vi” with a few added improvements

 General

Commands are case sensitive
vi uses a work buffer (i.e. chg are not made to your file until you write or save & exit)
You can write to a different file name with (:w filename)
vi –r filename to recover from a crashed terminal session

 Display

Status is shown on the last line (often line 24)

Sometimes text lines will be shown as @ and can be redrawn with ^L or ^R from
command mode

 ~ lines indicate positions beyond the end of the file

 Cursor Movement

h, j, k, l Move cursor left, down, up, or right
 (If you type a number, then h, j, k, or l you will move that many char)

 w forward word
 b back one word
 H Go to top of screen
 M Go to middle of screen
 L Go to bottom of screen
 ^D Down a half screen
 ^U Up a half screen
 ^F Forward full screen
 ^B Back full screen
 #G Go to a specific line number
 G, $ Go to end of file

CS390 – UNIX Programming Spring 2009 Page 7

 Richard Johnson 2/21/09

 Editing commands

I Go to beginning of line, and change to insert mode
A Go to end of line, and change to insert mode
o, O Open a blank line below (above), and change to insert mode
r Replace single character
R Replace (overwrite) until <ESC>
^V Escapes the next character (so you can type special characters)
u undo

See ‘d’ commands on p. 434

dd delete current line
dw delete word
d/<text> delete forward up to but not including the next occurrence of “text”

See ‘c’ commands on p. 435

 cw change to end of word
 cc change current line

 Search and Replace

/string/<return> Search for string (can be regular expression)
/ Repeat previous search (n)
? Find in reverse direction (N)

 :[address]s/search/replace/g address is current line if omitted
 otherwise, address can be line number or range
 (. is current line, % is whole buffer, $ is last line)
 g is for replacing multiple occurrences on same line

 Miscellaneous

J Join current line with next line
^G Display status information
:f File Information
. Repeat previous command
yy Yank current line to general buffer
p, P put yanked line from general buffer below (above) current line

CS390 – UNIX Programming Spring 2009 Page 8

 Richard Johnson 2/21/09

 Named Buffers

There are 26 named buffers (identified by lowercase letter)

“[a-z]#yy Yank # lines into named buffer [a-z]
“[a-z]p Put lines from named buffer [a-z] below current line

 Read and write

:r file Read a file and place contents at current line
:w[!] file Write to another file name (! Forces)
:[address]w >> file Write a range of lines and append to a file

